Abstract:Although AI agents have demonstrated impressive capabilities in long-horizon reasoning, their reliability is severely hampered by the ``Spiral of Hallucination,'' where early epistemic errors propagate irreversibly. Existing methods face a dilemma: uncertainty quantification (UQ) methods typically act as passive sensors, only diagnosing risks without addressing them, while self-reflection mechanisms suffer from continuous or aimless corrections. To bridge this gap, we propose a unified Dual-Process Agentic UQ (AUQ) framework that transforms verbalized uncertainty into active, bi-directional control signals. Our architecture comprises two complementary mechanisms: System 1 (Uncertainty-Aware Memory, UAM), which implicitly propagates verbalized confidence and semantic explanations to prevent blind decision-making; and System 2 (Uncertainty-Aware Reflection, UAR), which utilizes these explanations as rational cues to trigger targeted inference-time resolution only when necessary. This enables the agent to balance efficient execution and deep deliberation dynamically. Extensive experiments on closed-loop benchmarks and open-ended deep research tasks demonstrate that our training-free approach achieves superior performance and trajectory-level calibration. We believe this principled framework AUQ represents a significant step towards reliable agents.
Abstract:While Large Language Models (LLMs) show remarkable capabilities, their unreliability remains a critical barrier to deployment in high-stakes domains. This survey charts a functional evolution in addressing this challenge: the evolution of uncertainty from a passive diagnostic metric to an active control signal guiding real-time model behavior. We demonstrate how uncertainty is leveraged as an active control signal across three frontiers: in \textbf{advanced reasoning} to optimize computation and trigger self-correction; in \textbf{autonomous agents} to govern metacognitive decisions about tool use and information seeking; and in \textbf{reinforcement learning} to mitigate reward hacking and enable self-improvement via intrinsic rewards. By grounding these advancements in emerging theoretical frameworks like Bayesian methods and Conformal Prediction, we provide a unified perspective on this transformative trend. This survey provides a comprehensive overview, critical analysis, and practical design patterns, arguing that mastering the new trend of uncertainty is essential for building the next generation of scalable, reliable, and trustworthy AI.
Abstract:AI agents are rapidly advancing from passive language models to autonomous systems executing complex, multi-step tasks. Yet their overconfidence in failure remains a fundamental barrier to deployment in high-stakes settings. Existing calibration methods, built for static single-turn outputs, cannot address the unique challenges of agentic systems, such as compounding errors along trajectories, uncertainty from external tools, and opaque failure modes. To address these challenges, we introduce, for the first time, the problem of Agentic Confidence Calibration and propose Holistic Trajectory Calibration (HTC), a novel diagnostic framework that extracts rich process-level features ranging from macro dynamics to micro stability across an agent's entire trajectory. Powered by a simple, interpretable model, HTC consistently surpasses strong baselines in both calibration and discrimination, across eight benchmarks, multiple LLMs, and diverse agent frameworks. Beyond performance, HTC delivers three essential advances: it provides interpretability by revealing the signals behind failure, enables transferability by applying across domains without retraining, and achieves generalization through a General Agent Calibrator (GAC) that achieves the best calibration (lowest ECE) on the out-of-domain GAIA benchmark. Together, these contributions establish a new process-centric paradigm for confidence calibration, providing a framework for diagnosing and enhancing the reliability of AI agents.
Abstract:Synthetic personas are widely used to condition large language models (LLMs) for social simulation, yet most personas are still constructed from coarse sociodemographic attributes or summaries. We revisit persona creation by introducing SCOPE, a socially grounded framework for persona construction and evaluation, built from a 141-item, two-hour sociopsychological protocol collected from 124 U.S.-based participants. Across seven models, we find that demographic-only personas are a structural bottleneck: demographics explain only ~1.5% of variance in human response similarity. Adding sociopsychological facets improves behavioral prediction and reduces over-accentuation, and non-demographic personas based on values and identity achieve strong alignment with substantially lower bias. These trends generalize to SimBench (441 aligned questions), where SCOPE personas outperform default prompting and NVIDIA Nemotron personas, and SCOPE augmentation improves Nemotron-based personas. Our results indicate that persona quality depends on sociopsychological structure rather than demographic templates or summaries.
Abstract:As Large Vision-Language Models (LVLMs) are increasingly deployed in domains such as shopping, health, and news, they are exposed to pervasive persuasive content. A critical question is how these models function as persuadees-how and why they can be influenced by persuasive multimodal inputs. Understanding both their susceptibility to persuasion and the effectiveness of different persuasive strategies is crucial, as overly persuadable models may adopt misleading beliefs, override user preferences, or generate unethical or unsafe outputs when exposed to manipulative messages. We introduce MMPersuade, a unified framework for systematically studying multimodal persuasion dynamics in LVLMs. MMPersuade contributes (i) a comprehensive multimodal dataset that pairs images and videos with established persuasion principles across commercial, subjective and behavioral, and adversarial contexts, and (ii) an evaluation framework that quantifies both persuasion effectiveness and model susceptibility via third-party agreement scoring and self-estimated token probabilities on conversation histories. Our study of six leading LVLMs as persuadees yields three key insights: (i) multimodal inputs substantially increase persuasion effectiveness-and model susceptibility-compared to text alone, especially in misinformation scenarios; (ii) stated prior preferences decrease susceptibility, yet multimodal information maintains its persuasive advantage; and (iii) different strategies vary in effectiveness across contexts, with reciprocity being most potent in commercial and subjective contexts, and credibility and logic prevailing in adversarial contexts. By jointly analyzing persuasion effectiveness and susceptibility, MMPersuade provides a principled foundation for developing models that are robust, preference-consistent, and ethically aligned when engaging with persuasive multimodal content.
Abstract:Graphical user interface (GUI) agents built on vision-language models have emerged as a promising approach to automate human-computer workflows. However, they also face the inefficiency challenge as they process long sequences of high-resolution screenshots and solving long-horizon tasks, making inference slow, costly and memory-bound. While key-value (KV) caching can mitigate this, storing the full cache is prohibitive for image-heavy contexts. Existing cache-compression methods are sub-optimal as they do not account for the spatial and temporal redundancy of GUIs. In this work, we first analyze attention patterns in GUI agent workloads and find that, unlike in natural images, attention sparsity is uniformly high across all transformer layers. This insight motivates a simple uniform budget allocation strategy, which we show empirically outperforms more complex layer-varying schemes. Building on this, we introduce GUI-KV, a plug-and-play KV cache compression method for GUI agents that requires no retraining. GUI-KV combines two novel techniques: (i) spatial saliency guidance, which augments attention scores with the L2 norm of hidden states to better preserve semantically important visual tokens, and (ii) temporal redundancy scoring, which projects previous frames' keys onto the current frame's key subspace to preferentially prune redundant history. Across standard GUI agent benchmarks and models, GUI-KV outperforms competitive KV compression baselines, closely matching full-cache accuracy at modest budgets. Notably, in a 5-screenshot setting on the AgentNetBench benchmark, GUI-KV reduces decoding FLOPs by 38.9% while increasing step accuracy by 4.1% over the full-cache baseline. These results demonstrate that exploiting GUI-specific redundancies enables efficient and reliable agent performance.
Abstract:While AI agents hold transformative potential in business, effective performance benchmarking is hindered by the scarcity of public, realistic business data on widely used platforms. Existing benchmarks often lack fidelity in their environments, data, and agent-user interactions, with limited coverage of diverse business scenarios and industries. To address these gaps, we introduce CRMArena-Pro, a novel benchmark for holistic, realistic assessment of LLM agents in diverse professional settings. CRMArena-Pro expands on CRMArena with nineteen expert-validated tasks across sales, service, and 'configure, price, and quote' processes, for both Business-to-Business and Business-to-Customer scenarios. It distinctively incorporates multi-turn interactions guided by diverse personas and robust confidentiality awareness assessments. Experiments reveal leading LLM agents achieve only around 58% single-turn success on CRMArena-Pro, with performance dropping significantly to approximately 35% in multi-turn settings. While Workflow Execution proves more tractable for top agents (over 83% single-turn success), other evaluated business skills present greater challenges. Furthermore, agents exhibit near-zero inherent confidentiality awareness; though targeted prompting can improve this, it often compromises task performance. These findings highlight a substantial gap between current LLM capabilities and enterprise demands, underscoring the need for advancements in multi-turn reasoning, confidentiality adherence, and versatile skill acquisition.
Abstract:AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
Abstract:Malicious content generated by large language models (LLMs) can pose varying degrees of harm. Although existing LLM-based moderators can detect harmful content, they struggle to assess risk levels and may miss lower-risk outputs. Accurate risk assessment allows platforms with different safety thresholds to tailor content filtering and rejection. In this paper, we introduce per-topic severity rubrics for 11 harmful topics and build BingoGuard, an LLM-based moderation system designed to predict both binary safety labels and severity levels. To address the lack of annotations on levels of severity, we propose a scalable generate-then-filter framework that first generates responses across different severity levels and then filters out low-quality responses. Using this framework, we create BingoGuardTrain, a training dataset with 54,897 examples covering a variety of topics, response severity, styles, and BingoGuardTest, a test set with 988 examples explicitly labeled based on our severity rubrics that enables fine-grained analysis on model behaviors on different severity levels. Our BingoGuard-8B, trained on BingoGuardTrain, achieves the state-of-the-art performance on several moderation benchmarks, including WildGuardTest and HarmBench, as well as BingoGuardTest, outperforming best public models, WildGuard, by 4.3\%. Our analysis demonstrates that incorporating severity levels into training significantly enhances detection performance and enables the model to effectively gauge the severity of harmful responses.
Abstract:Automated service agents require well-structured workflows to provide consistent and accurate responses to customer queries. However, these workflows are often undocumented, and their automatic extraction from conversations remains unexplored. In this work, we present a novel framework for extracting and evaluating dialog workflows from historical interactions. Our extraction process consists of two key stages: (1) a retrieval step to select relevant conversations based on key procedural elements, and (2) a structured workflow generation process using a question-answer-based chain-of-thought (QA-CoT) prompting. To comprehensively assess the quality of extracted workflows, we introduce an automated agent and customer bots simulation framework that measures their effectiveness in resolving customer issues. Extensive experiments on the ABCD and SynthABCD datasets demonstrate that our QA-CoT technique improves workflow extraction by 12.16\% in average macro accuracy over the baseline. Moreover, our evaluation method closely aligns with human assessments, providing a reliable and scalable framework for future research.